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9.1  Engineering is the Key

As we mature into the Information Age, the same forces that assured success during the Industrial
Revolution are driving how we produce software.  The world’s industrial giants attained their
status through superior mass production processes developed through advanced engineering.
Mass demand and global competition are driving software production into the world of
engineering, the same as they did for hardware.

Computer hardware engineering is quite mature and grew out of the manufacturing and electronic
design processes.  Within the hardware engineering discipline, “hardware design techniques are
well-established, manufacturing methods are continually improved, and reliability is a realistic
expectation rather than a modest hope.”  Unfortunately, software has not advanced nor matured
as quickly as the electronic hardware upon which it runs.  In computer-based systems, where the
hardware component is exceptionally stable with predictable fast-paced advances — the software
is usually “the system element that is most difficult to plan, least likely to succeed (on time and
within cost), and most dangerous to manage.”  [PRESSMAN92]

New trends in development, however, are gradually removing the riskiest component stigma
from software.  By applying the engineering discipline that matured hardware beyond the risk
threshold, software can now achieve expected levels of reliability, maintainability, and reusability.
Software engineering is maturing software development, which has been historically characterized
as a cottage industry populated by artisans, craftsmen, and skilled maverick developers.
Engineering discipline is transforming software production into a mighty industrial machine
characterized by a finely-tuned engineering process that predictably and consistently mass produces
reliable software, on time, at competitive prices.  The quickest, cheapest, highest quality way to
build software is not to make mistakes during its development, and not to do any job more than
once.  Through years of experience and a well-defined, mature process, world-class software
developers have learned how to do the right things, the right way — the first time, every time.
Sound software engineering discipline is essential for software success.  [ZELLS92]

“Above all, discipline; eternally and inevitably, discipline.  Discipline is the screw, the nail, the
cement, the glue, the nut, the bolt, the rivet that holds everything tight.  Discipline is the wire, the
connecting rod, the chain that coordinates.  Discipline is the oil that makes machines run fast, the
oil that makes parts slide smooth, as well as the oil that makes the metal bright.  The principle of
discipline here is divinely simple; you lay it on thick and fast, all the time.”  — Private Gerald
Kersh  [KERSH90]

Software engineering discipline cannot be ignored; it must be laid on thick and fast — all the
time.  It must be institutionalized early in the life cycle.  For large military software systems, this
is particularly difficult because most requirements are based on subjective strategic and tactical
demands, are dynamic, evolve over time, and are troublesome to precisely define.  Developers
and testers (software verifiers) must have procedures to identify and remove errors during
requirements definition and design before they are translated into code.  Quality can only be
accomplished through the rigorous application of software engineering discipline and process
knowledge to ensure that quality is the norm — not the exception.  As you will learn throughout
these Guidelines, successful program management strives for both process and product quality
through methods to:
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• Assess process and product status,
• Foster early process and product error identification and correction, and
• Continuously improve processes and product methodologies to prevent defects.

The implementation of a disciplined engineering process for software is a complex process.
Software engineering for a system interacts with, and is dependent upon, related domain
engineering, information engineering, hardware engineering, and systems engineering activities
that occur in the production of a total, integrated system.  Figure 9-1 illustrates (on a high level)
the relationships among these engineering disciplines.
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Figure 9-1.  Total Quality Engineering

9.2  What is Domain Engineering?

Domain engineering refers to the techniques (i.e., methods and processes) used to engineer a
family of similar or related systems (i.e., a domain or product-line). The focus of domain
engineering is to capture engineering knowledge (requirements, architectures, components and
other life cycle artifacts) within a particular domain for use on future or concurrent programs.
This knowledge (captured by models, architecture specifications, etc.) is then used to configure
a system architecture and develop (or select) reusable components based upon previous
requirements analyses, design, coding, integration and testing efforts.

Domains are groups of related systems sharing a set of common capabilities.  Domains can be
described pictorially as having either vertical or horizontal relationships among each other, as
illustrated in Figure 9-2.  A vertical domain is a specialized class of system, such as an information
system, command and control, or embedded weapon system.  Horizontal domains consist of
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general software functions applicable across multiple vertical domains.  These can include user
interfaces, common algorithms (e.g., data structures, strings, matrices, lists, stacks, queues, trees,
graphs), common mathematical solutions (e.g., linear systems applications, integration, differential
equations), and software tools or graphics packages.  Although the domain engineering steps are
presented here as sequential activities, in practice they are highly iterative.  Major domain
engineering steps include:

• Domain identification and scoping,
• Domain analysis,
• Domain design, and
• Domain implementation.
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Figure 9-2.  Vertical and Horizontal Domains

9.2.1  Domain Identification

The domain identification step is critical to overall program success.  Your understanding of the
subject domain and customer needs derived during this phase drive the entire engineering effort.
Domain identification defines domain boundaries, interfaces, and dependencies.  The knowledge
gained during domain identification provides domain analysts with a common understanding of:

• Domain scope (inclusion or exclusion of domain applications),
• The relationship of the subject domain with other domains,
• The relationships among domain applications, and
• The inputs/outputs to and from the domain.
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During domain identification, a number of domain-representative systems are identified.  These
“exemplar” systems highlight common, variable domain requirements.  The number of exemplars
must reflect the level of effort required to conduct the modeling effort with schedule constraints.
Note that domain analysis addresses more than the exemplars — it also considers other information
such as technology trends and anticipated future requirements.

9.2.2  Domain Analysis

Domain analysis captures and models requirements information across a particular domain.
Domain analysis is the process of identifying, documenting, and modeling common, variable
requirements among domain systems.  Domain analysis techniques include interviews,
documentation review, and reverse engineering, to identify and categorize (i.e., model) domain
requirements.  Other inputs, such as enterprise models (e.g., data models in IDEF1X and
operational models in IDEF0), are used during domain analysis.  The resulting domain model(s)
form a domain problem space (or domain requirements) representation.  These models provide
a domain perspective of domain systems in terms of data (or objects), functional capabilities, and
control or (behavioral aspects).  Along with these perspectives, a standard domain vocabulary is
developed.  The products of domain analysis vary depending on the analysis method used and
typically include the following:

• Information model.  This provides the domain data (object) perspective.  During this activity,
domain data requirements, essential for implementing domain applications are represented.
Variability among exemplars is represented in the information model through alternative
objects and/or attributes.  Information entities are traced back to the exemplar sources from
which they are derived.

• Feature or functional model.  This captures the end-user’s understanding of domain
application capabilities through a functional domain systems perspective.  Alternative feature
commonality and variability among the different exemplar systems are represented in the
domain model.  Features are categorized and traced back to their exemplar sources.

• Operational model.  This identifies domain application control and data flow commonalities
and differences from a behavioral perspective.  This activity abstracts and then structures
common domain functions, features, and sequencing into an abstract operational model from
which individual application control and data flow are derived.

• Domain dictionary.  A useful product of domain analysis, this defines the terms and/or
abbreviations used in describing domain features, their textual description, and domain entities.
The dictionary helps alleviate miscommunication by providing a central location for domain
information users to search for unfamiliar terms and abbreviations or for definitions of terms
used differently or specific to the domain.

9.2.3  Domain Design

The domain-specific software architecture (DSSA) is the foundation of systematic reuse and the
maturing of software engineering maturity.  The DSSA provides the high-level design for all
domain (or product-line) systems and establishes the context for high-leverage, large-scale reuse.
The domain model, created in the domain analysis step, is used during domain design to derive
the DSSA, which specifies a set of solutions to the requirements represented in the model.  The
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DSSA accommodates domain model requirements variability by capturing context drivers leading
to alternative solutions.  [KOGUT94]  The DSSA identifies:

• Component classes.  These are derived through partitioning overall system functionality, as
captured in the domain model.  A component class represents a category of components with
similar functionality (e.g., DBMS or Geographic Information Systems).  Each functional
requirement captured in the domain model is allocated to one or more component classes.
Component class variability reflects the variability captured in the domain model by specifying
alternative and optional classes.

• Connections. These describe how component classes are linked.  Typical connections
specifications include data flow, direction, and type (e.g., SQL query, protocol).  Alternative
connections result from variability in domain requirements.

• Constraints.  These describe component class characteristics allocated from the domain
model and implied by the architecture.  That is, the constraints highlight functionality derived
from the domain model, as well as the functionality dictated by component class connections.
Because of the variability captured in the domain model, it is necessary to specify alternative
and optional component class constraints.

• Rationale.  This facilitates selection among reusable components.  For example, suppose a
more expensive DBMS will provide a faster response.  This provides the rationale for choosing
the more expensive DBMS when response time is critical.

Key to domain design is maintaining traceability between the derived architectural solution and
domain modeled requirements.  Domain designers can use this traceably to develop an initial
systems architecture and to select or build a set of reusable components that best fit the new
system’s requirements.  This allows selection of specific architectural solutions based on user/
developer selection of specific domain requirements.  This forms the basis for qualified
components composition or new component specification and development based on constraints
specified in the architecture.

9.2.4  Domain Implementation

Domain implementation refers to:  (1) the process of creating new components or modifying
existing components for a DSSA component class; and (2) altering components in response to
changes in requirements or the detection of defects.  These domain assets can be employed or
modified to suit new systems development within the domain.  Domain implementation can also
include the development of automated tools that aid life cycle efforts, such as composition tools,
generators, and analyzers.  [MAYMIR95]

There are four main strategies for domain implementation:  generation; new development; re-
engineering; and identification of commercial-off-the-shelf (COTS) and government-off-the-shelf
(GOTS) software.  In addition, for re-engineered software, COTS, and GOTS, there is a separate
domain-specific step for software qualification.  Some combination of these strategies is employed
to complete domain implementation.  The cost and applicability of these strategies depends on
tool support (especially for generation), the level of domain maturity (for re-engineering), and
the availability of COTS or GOTS software.  These approaches must be analyzed to determine an
appropriate domain implementation strategy.  Specific strategies are then developed to fit the
needs of the customer.  A brief discussion of these strategies follows.
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• Generation.  If a component class is mature and well-defined, generative techniques may be
applied to automatically produce reusable assets that fit the generic architecture.  Commercial
generators are available to support this strategy in several narrowly focused areas.  An example
is the graphical user interface (GUI) builder.  For component classes where commercial tools
are not available, it may be necessary to build special-purpose application generators tailored
to the class.

• New development.  Reusable assets can be developed, as part of a normal software engineering
effort, to satisfy generic architecture requirements.  This strategy, frequently employed by
domain engineering teams, is suitable when legacy software is nonexistent or not suitable for
reuse.

• Re-engineering.  Legacy systems (e.g., exemplars used during domain analysis) may include
components close enough to the desired functionality and structure to warrant redesign and/
or re-implementation to be reusable within the domain.

• Qualification.    Many domain engineering teams are using available software to satisfy
DSSA.  Pre-existing software must be evaluated against DSSA requirements.  Component
qualification assesses how well a particular component fits into a DSSA component class
and ensures components are reusable within a given architectural context.  Qualification
criteria for evaluating reusable components are dependent on domain characteristics and
user needs.

If new software is chosen as the domain implementation strategy, DSSA requirements are used
in creating new reusable software assets.  Several efforts have focused on developing generic
guidelines for creating reusable software (hence, the name “design-for-reuse”).  However,
guidelines differ based on development methodology (object-oriented, functional decomposition,
etc.).  An appropriate software development methodology must be used to create reusable software
assets.  Domain engineering provides necessary background for tailoring design-for-reuse
guidelines for a selected development methodology.

9.2.5  Benefits of Domain Engineering

In September 1991, the Air Force and the Advanced Research Projects Agency (ARPA) selected
the Air Force Space Command’s Space Command and Control Architectural Infrastructure (SCAI)
program as the Air Force Demonstration Project for Software Technology for Adaptable and
Reliable Systems (STARS) megaprogramming concepts.  Demonstration programs were also
awarded to the Army and Navy.

The demonstration program’s goals were to show the feasibility of using an architecture-based,
product-line approach to system development.  The SCAI program realized benefits in the areas
of productivity, error reduction, and cost savings.  Productivity went from 175 lines-of-code
(LOC) per month to over 1,700 LOC per month.  Defects decreased from 3+ errors per 1,000
LOC to about 0.35 errors per 1,000 LOC.  Cost per 1,000 LOC also decreased from the typical
$140+ to about $57.  These benefits were realized because of the domain engineering approach.

For additional information on domain engineering, or assistance in selecting and implementing
appropriate domain engineering methods, please contact one of the following organizations [see
Volume 2, Appendix A for addresses, phone numbers, and Web addresses]:
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• AF/Comprehensive Approach to Reusable Defense Software (CARDS) Program, and
• Software Engineering Institute (SEI).

9.3  What is Systems Engineering?

The first formalization of systems engineering for military development occurred in the mid-
1950s on ballistic missile programs.  [DSMC90]  Since then, the systems engineering discipline
has evolved to encompass both technical and management processes, and has expanded its
applicability to cover the entire life cycle of a software-intensive system.  A technically-oriented
definition of systems engineering is:

“…an interdisciplinary approach encompassing the entire technical effort to evolve and verify an
integrated and life cycle balanced set of systems people, product, and process solutions that satisfy
customer needs.”  [EIA632]

Army Field Manual 770-78, Systems Engineering (1979), provides a definition, not specific to
any particular industry segment, that emphasizes the leadership role systems engineering plays
in integrating other disciplines.  It defines systems engineering as:

“The selective application of scientific and engineering efforts to:

• Transform an operational need into a description of the system configuration which best satisfies
the operational need according to the measures of effectiveness;

• Integrate related technical parameters and ensure compatibility of all physical, functional,
and technical program interfaces in a manner which optimizes the total system definition and
design; and

• Integrate the efforts of all engineering disciplines and specialties into the total engineering
effort.”

Whichever definition you prefer, both have the same goal — to effectively balance system elements
by integrating them into a complete system that meets customer needs.  Systems engineering is
not a one time or single phase effort.  It is an essential activity throughout the system’s life.
During the early planning phase it assures flexibility and supportability are built into the design.
In later years, it aids in smooth, effective change implementation and modification, often adding
value and prolonging the system’s life, as illustrated in Figure 9-3.  [EIA632]
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Figure 9-3.  Systems Engineering Process  [EIA632]
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Of a system’s components (i.e., people, products, and processes), two of the more notable products
are hardware and software.  Systems engineering takes both into account, giving each equal
weight in analysis, tradeoffs, and engineering methodology.  In the past, the software portion was
viewed as a subsidiary, follow-on activity.  The new focus in systems engineering is to treat both
software and hardware concurrently in an integrated manner.  At the point in system design
where the hardware and software components are addressed separately, modern engineering
concepts and practices are employed for software, the same as they are for hardware.
[MOSEMANN921]

Figure 9-4 illustrates how systems engineering, hardware engineering, and software engineering
are concurrent processes.  The primary role of systems engineering is to ensure that the many
diverse elements comprising a system are compatible and ready when needed.  This avoids the
situation in which the hardware or software, when integrated into the system, fails to function
harmoniously with other system components.  Systems engineering concentrates on comprehensive
planning and coordination throughout the development process to ensure integration problems
are minimized and that final system implementation fulfills all mission requirements.  Different
approaches have evolved to implement the systems engineering process.  One approach used by
DoD is integrated product development (IPD) that focuses on the abatement of integration issues.

Figure 9-4.  Relationship between Systems, Hardware, and Software Engineering

9.3.1  Integrated Product Development (IPD)

Integrated product development is “a team approach to systematically integrate and concurrently
apply all necessary disciplines throughout the system life cycle to produce an effective and
efficient product or process that satisfies customer needs.”  [WAGNER95]  The key ingredient
in IPD is teamwork.  IPD provides a technical-management framework for a multi-disciplinary
team (comprised of multiple specialties) to define the product.  The team includes users (both
operational and support) to better address their needs and ensure developers consider all aspects
of the system life cycle.  IPD emphasizes up-front requirements definition, tradeoff studies, and
the establishment of a change control process for use throughout the entire life cycle.  This life
cycle emphasis is why, according to Captains Gary Warner (USAF) and Randall White (USAF),
the F-22 program refers to their IPD teams as integrated product teams (IPTs).  The term
“development” is omitted because the IPT continues into the operation and support phase by
handling modifications and systems upgrades.  [WAGNER95]  An example of a multi-disciplined
IPD team is illustrated in Figure 9-5.
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Figure 9-5.  Example Integrated Product Team Members

Figure 9-6 illustrates the concept of IPD during the systems design phase.  This figure is mainly
conceptual, as several iterations through each filter step are often required.  Four integration
filters are shown in the overall process.  As information is taken into the traditional discipline
filter, emphasis is placed on traditional design techniques (such as structural stress analysis)
required at any given design stage.  Traditional design engineers rely heavily on current technology.
At the same time, design documentation is developed and/or modified by engineering specialists
who establish requirements independent of the emerging traditional design.  They also review
and modify the traditional design output.  All requirements are then filtered by the unique demands
of system products.  Subsequently, requirements are described by specifications and drawings
(or in some cases, prototypes) filtered through the user group to determine whether they satisfy
needs.
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Figure 9-6.  Integrated Product Development Process
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early.  This approach avoids delays in fielding the product and prevents costly operational failures.
Participation by contracts and logistics personnel also ensures a smooth acquisition process, low
product cost, and availability of reliable supplies of parts and materials.

Automated design tools, computer-aided manufacturing systems, and information management
tools are commercially available for concurrent engineering applications.  A centralized graphical
representation can help the team visualize key elements and relationships to achieve a multi-
disciplinary design solution.  Automated products enable the storing of supporting data so the
results of historical design efforts can be applied to the task at hand.  This hastens product
improvement efforts beyond many life cycle iterations.  [SHINA91]

An example of concurrent engineering in practice is the F-22 program.  Colonel Robert Lyons,
Jr., former co-leader of the F-22 System Program Office Avionics Group, explained that IPD is
being employed throughout the F-22 program office, where he says they are using an expanded
version of IPD with concurrent engineering.  The program office is uniting program managers,
as well as specialists in contracts, cost analysis, test, safety, logistics, and quality assurance to
oversee product development.  Lyons says that, “Already in this program we [Government and
industry] have laid on the table information that in other programs people wouldn’t have heard
about for several years.”  He explains that the beauty of including everyone affected by the
development in areas other than their own is that all program concerns and requirements are
identified and addressed up-front.  [LYONS92]  Everyone, in this case, also includes the F-22’s
customer, Air Combat Command (ACC).  According to Captains Wagner and White, ACC is
active in the F-22 Weapon System concurrent engineering effort, having local representatives
who are “active team members and provide on-the-spot inputs for requirement issues.”  This
inclusion of the customer into the concurrent engineering team “kept the user in the loop and
provided a quick way of obtaining guidance on requirements.”  [WAGNER95]  A recent
assessment of IPD on the F-22 identified several key factors needed for successful implementation:

• Implement IPD from the beginning of the program with extensive planning to make it happen;
• Train and educate the team members on IPD, including new personnel coming in mid-program;
• Enhance communications with co-location of team members and use of electronic mail;
• Structure the system program office (SPO) to reflect the IPD system breakdown;
• Have the necessary integrated management tools to do the job [these include technical

performance measurements, integrated master plans (or systems engineering management
plans), and integrated master schedules (or systems engineering management schedules)];
and

• Establish an analysis and integration (A&I) team to integrate IPD team efforts to ensure “I”
stands for integrated and not independent.  [WAGNER95]

9.3.3  The Case for Software Engineering

The forces driving DoD towards engineering our software are primarily economic.  Lloyd K.
Mosemann, II, former Deputy Assistant Secretary of the Air Force (Communications, Computers,
and Support Systems) explains that, “military software must be engineered.  There is too much of
it and systems are too large to develop cost-effectively using the hand-tooled, cost-insensitive
‘software-as-art’ model.”  [MOSEMANN922]  He further states that, “The definition and
institutionalization of software engineering in the Air Force is now our highest priority.”
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[MOSEMANN91]  From the DoD perspective, Paul Strassmann, former Director of Defense
Information (ASD/C3I), reinforced the case for software engineering by declaring, “The No. 1
priority of DoD, as I see it, is to convert its software technology capability from a cottage industry
into a modern industrial method of production.”  [STRASSMANN91]

To understand what we mean by software engineering, the Software Engineering Institute (SEI)
examined the mechanical and civil engineering disciplines which evolved from ad hoc solutions
to engineered ones based on scientific principle.  By scientific principle we mean:

“…an attempt to explain a certain class of phenomena by deducing them as necessary consequences
of other phenomena regarded as more primitive and not in need of explanation”.  [McGRAW89]

As practitioners within a discipline accept new explanations, the discipline shows a progression
from crafted, ad hoc solutions to a formal, codified body of knowledge.  Scientific principles, in
the form of proven mathematical statements, are developed to explain and predict results.  Initial
solutions establish the foundations for creating new instances predicated on scientific principles.
New and larger problems can then be addressed based on initial solutions.  During this evolution,
the state-of-the-practice constantly improves.  Software engineering involves improving the
practice through the codification of collective knowledge and experience.  [HOLIBAUGH92]

In contrast to engineered solutions, crafted solutions are unique and problem-specific and the
experience base is usually limited to that of the practitioner.  Eileen Quann, president of Fastrak
Training, Inc., equates the differences between software-as-art (or craft) and an engineered product
to the different approaches required when building a dog house, a family home, and a skyscraper,
as illustrated in Figure 9-7.  In each case, building construction generally consists of assembly
functions.  For all three structures, a floor, walls, a roof, a door, and windows must be built.

ART CRAFT ENGINEERING

Fido

Figure 9-7.  Order of Magnitude Between Software Engineering and Software-as-Art
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The differences among the construction projects are found in the skills and tools needed to
accomplish each job.  Your teenage son can build a doghouse with a few nails and some wood.
However, he is not qualified to build your family home which requires craftsmen skilled in
reading blueprints, plumbing, wiring, roofing, flooring, insulation, and inspections.  Similarly,
the same craftsmen are not usually qualified to build a skyscraper, which requires additional
skills in such areas as joining steel beams, installing tremendous amounts of glass and concrete
that must withstand enormous physical stresses, and electrical wiring with demands much greater
than a normal house.  More importantly, while your teenage son may be able to both design and
construct the doghouse, when a program reaches the size of something like a skyscraper, design
engineers must have more experience and knowledge than is required of a normal engineer/
craftsman.  To design a large-scale building containing immense walls of glass, steel beams, and
concrete, a design engineer must be an educated professional, proficient in topics such as the
physics of structural stress.  They must also have expertise in additional areas such as elevator
dynamics, optimum space utilization, environmental power plants, and emergency and
handicapped access requirements.  Therefore, it is just as important that your engineering design
team be appropriately trained and experienced as it is that your construction personnel have the
right skill and experience level.

Software engineering is also required for economic reasons.  Consider the fact that the cost to
support deployed DoD software system comprises 60% to 80% of total life cycle costs.  [Ada/
C++91]  The high cost of software support stems from products often so unique and hand-
crafted no one other than the original developer can understand them.  Supporting agencies have
had to start from scratch when upgrading or enhancing the software they are responsible to
maintain.  Defects, not discovered until the software is deployed, are at times impossible to
correct.  Strassmann warns these practices are no longer acceptable, “Because we don’t have the
cash anymore to reinvent and reinvent and reinvent exactly the same routine.” [STRASSMANN92]
Figure 9-8 illustrates how software costs have historically been disbursed when software was
developed as art.  It also shows the difference in spending ratios when software is engineered.
What Figure 9-8 does not show, however, is that the cost pie shrinks when software is engineered
because software support costs are substantially reduced.
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Figure 9-8.  Software Life Cycle Costs

When you use the structured discipline imposed by the engineering process, costly software
support problems are addressed up-front.  Reliability, maintainability, and supportability are
designed into the system instead of being included after development and deployment.  Resources
are planned and managed within a total life cycle framework.  Large investments are placed in
up-front design and engineering to gain savings over the life of the system.

To state that engineering is a solution to our software problems is no revelation.  Simply put,
systems and software engineering provide sound, proven discipline for achieving program success.
As An Wang, founder of Wang Laboratories, aptly stated, “Success is more a function of consistent
common sense than it is of genius.”  [WANG86]  By converting software production from a
cottage industry into a modern industrial process, the same benefits can be attained as those
gained through the engineering and mass production of hardware:

• Lower unit price,
• Lower maintenance costs,
• Reusable and interchangeable parts, and
• Greater reliability.

9.3.4  Domain Engineering and the Software Engineering Process

Mature engineering disciplines support clear separation of routine problem solving from the
research and development required to address unprecedented aspects of systems within a well-
defined product-line.  Fundamental to such a discipline is the leveraging of a publicly-held,
experience-based, and formally transitioned technology base that includes product models (e.g.,
designs, specifications, performance ranges) and practice models (tools and techniques to apply
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the product models).  A critical characteristic of mature engineering is that the products built
from these models are well-understood and predictable before they are produced.  Software
engineering state-of-the-practice has yet to reach this level of maturity.  Instead of basing new
development on a technology base of well-understood models, current software engineering
practice tends to start each new application development from scratch with the specification of
requirements, and moves directly into design and implementation.  By contrast, disciplined
software engineering relies on a stable technology base of reusable assets, including requirements,
designs, architecture, and software.

Figure 9-9 illustrates the role of domain engineering in establishing a mature, disciplined software
engineering process and a product-line development strategy.  The stable technology base, specific
to the product-line, called the product-line asset base, is created and maintained by domain
engineering, which while distinct and separate from the application engineering activity, defines,
drives, and constrains application engineering.  Domain engineering analyzes, selects, and
produces the assets to populate the product-line asset base, which captures the commonality and
variability across an entire product-line and includes models that facilitate understanding and
specialization to a particular system.  The application engineering process then uses these products
and processes to develop software systems within the product-line. The application engineer
draws upon these assets to develop reuse-based products (i.e., software systems).  By using well-
understood requirements, architecture models, well-documented processes, and high-quality
reusable software, the engineer is able to quickly and cost-effectively build more reliable and
predictable software systems for the product-line.

Domain
Engineering

Application
Engineering

Reuse-Based
Products

Product-Line
Asset Base

application

validation

insert
domain models
domain architectures
product-line assets
(components, tools,
processes)

experience
in use
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develop

system-specific requirements

Figure 9-9.  Domain Engineering and Software Engineering Discipline

The separation of domain engineering from application engineering highlights the need and
significance of developing reusable corporate assets including domain models, architectures,
processes, and components.  The application engineering function then focuses on using,
validating, and extending this technology base, instead of beginning with a blank sheet.  In
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addition to creating the initial set of domain assets, domain engineering processes continue to
add and enhance the technology base according to the requirements associated with application
engineering.

9.3.5  Relationship Among Enterprise Engineering, Domain

Engineering, and Application Engineering

There has been a service-wide effort to develop organizational enterprise models, which combined
comprise the DoD Enterprise Model.  While the synergy between domain and application
engineering has become better understood, the connection to enterprise engineering has remained
weak.  Domain engineering represents an intermediate level of abstraction between knowledge
captured at the enterprise level and the array of systems developed at the application engineering
level.  Domain engineering reduces the complexity (and hence the risks) of leveraging enterprise-
wide common data and functions in the development of individual applications using classical
divide-and-conquer techniques.  Figure 9-10 illustrates the basic methods (at a very high level)
associated with the three major software engineering processes: enterprise engineering, domain
engineering, and application engineering.  Each of these processes attacks the problem space,
the solution space, and the implementation space at different levels of abstraction.  Application
engineering is concerned with a single system/application, whereas domain engineering takes
into account multiple similar or related systems; and enterprise engineering looks at an entire
enterprise’s (organization’s) high-level data and operational needs.

Figure 9-10.  Three-tiered View of Organizational Engineering Processes

Enterprise
Analysis

Enterprise
Design

Enterprise
Implementation

Domain
Analysis

Domain
Design

Domain
Implementation

Requirements
Analysis

Application
Design

Implementation

Enterprise Engineering

Domain Engineering

Application Engineering

Enterprise Model Ent Architecture

Domain Model Domain Architecture Domain Assets



9-20

Chapter 9: Engineering Software-Intensive Systems                                                  GSAM Version 3.0

Viewed top-down, the enterprise for an individual organization can be broken down into multiple
domains, which in turn can be broken down into multiple applications.  Managing and engineering
software from these three different levels helps mitigate risks.  It also ensures that information
and insight developed at higher-levels of abstraction are leveraged at lower levels.

9.4  What is Software Engineering?

Mosemann defines software engineering in a meaningful context for software managers when he
explains,

“By software engineering, I mean simply the application to software of the traditional engineering
process, which encompasses the following kinds of activities:

• Iteration between formal analysis and design,
• Heavy use of earlier designs,
• Tradeoffs between alternatives,
• Handbooks and manuals,
• A pragmatic approach to cost-effectiveness, and
• Attention to economic concerns.” — Lloyd K. Mosemann, III  [MOSEMANN923]

DoD 5000.2-R, Mandatory Procedures for Major Defense Acquisition Programs (MDAPs) and
Major Automated Information System (MAIS) Acquisition Programs, applies the traditional
engineering process to software.  It states that,

“Software shall be managed and engineered using best processes and practices that are known to
reduce cost, schedule, and technical risks.  It is DoD policy to design and develop software systems
based on systems engineering principles...”

The principles include:

• Use of open system concepts;
• Exploiting software reuse opportunities;
• Use of appropriate programming languages in government-supported applications;
• Use of DoD standard data;
• Selecting contractors with domain experience, a successful past performance, and a

demonstrable mature software development capability and process; and
• Use of software metrics.

Additionally, software engineering structures the complexity of software development with a
defined set of techniques and methods to measure and control the process.  [ZRAKET92]
Pressman identifies methods, tools, and procedures as the basic elements necessary to ensure a
quality product:

“[Software engineering is]...an outgrowth of hardware and systems engineering.  It encompasses
a set of three key elements—methods, tools, and procedures—that enable the manager to control
the process of software development and provide the practitioner with a foundation for building
high-quality software in a productive manner.” — Roger S. Pressman  [PRESSMAN92]
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• Software engineering methods define the technical how-to’s for software development.
Methods cover a range of tasks that include:
− Program planning and estimation,
− System and software requirements analysis,
− Architecture design,
− Algorithm procedure and data structure development, and
− Coding, testing.

• Software engineering tools give automated (or semi-automated) support to the methods.  A
variety of tools support each of the methods listed above.  Computer-aided software engineering
(CASE) is an integration of different tools where information created by one tool can be used
by other tools.  CASE combines software, hardware, and a software engineering database of
information about analysis, design, code, testing, and metrics.

• Software engineering procedures merge the methods and tools for rational, timely software
development.  Procedures establish the order in which the methods are applied, deliverables
(reports, documents, capabilities, functions) are required, and controls (ensuring quality and
coordinating change) are enacted.  They also define the milestones needed to evaluate software
development progress.

• Software engineering discipline consists of defined steps combining the methods, tools, and
procedures forming the basis for process improvement activities.  These steps are often referred
to as software engineering paradigms (or models).  Paradigms must be selected based on
your type of program and application, the methods and tools used, and the constraints and
deliverables required.  [PRESSMAN92]  Figure 9-11 summarizes the components of software
engineering.

Figure 9-11.  Software Engineering Elements

As with systems engineering, numerous approaches have evolved for implementing the software
engineering process.  For weapon systems, various approaches are integrated within the systems
engineering process.  The IPD example is one such approach.  For Management Information
Systems (MIS), information engineering (IE) and Integrated Computer-Aided Manufacturing
Definition Language (IDEF) are approaches that implement the software engineering process.
What brings the methods, tools, and procedures of software engineering together are its goals
and a set of principles that must be accomplished to achieve engineered software.  The defined
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set of principles, transcending all engineering efforts, support and implement the key goals.
They also help with the complexity of managing the development of a major software-intensive
system.

9.4.1  Software Engineering Goals

Remember, the primary goal for all software engineering efforts is for the software solution to
meet user needs by fulfilling stated requirements.  However, in many large, complex software-
intensive systems, requirements often evolve over the life of the system with the greatest costs
incurred during the maintenance phase.  Given that change is a constant in the life cycle, the
discipline of software engineering is founded on six main goals.  The main software engineering
goals are functionality, supportability, reliability, safety, efficiency, and understandability.

9.4.1.1  Functionality

If the software doesn’t provide a solution to user needs, it has no purpose.  Functionality of the
software is its primary goal.  If this is not met, all other goals are moot.  If the functionality goal
of a car is transportation, then the car must be able to take you where you want to go before other
goals, like color, fuel efficiency, comfort, etc. are worth considering.  Because we tend to specialize,
we sometimes put too much emphasis on specialty goals, while forgetting to overall purpose of
the project.

9.4.1.2  Supportability

Supportability [discussed in detail in Chapter 12, Software Support] is the ability to perform
maintenance and enhance, upgrade, or otherwise change the software.  Component aspects of
supportability include maintainability, adaptability, and modifiability.  Weapon system software
requires a high degree of supportability, as it must be changed to keep pace with evolving threats.
Both weapon system and MIS software must also be regularly altered to keep up with the evolution
of user, operational, and support requirements.  These environmental and evolutionary factors
result in controlled software changes.  Defect correction is viewed as a controlled software change.

To effectively support a software system, all the explicit and implied design decisions comprising
the solution must be honored.  This requires that the design rationale be captured in a manner
that software support personnel can use during the system’s normal 10 to 30 year operational life
of the system.  If this information is not captured and considered, new software will end up being
patched into the original code by breaking apart the logical basis of the design.  Also, if the
software is initially poorly designed and constructed, after several block updates the original
structure will tend to deteriorate and get lost, complicating future software support efforts.  Well-
engineered software systems are easily supportable and can accommodate changes without
increasing the complexity of the original design.

9.4.1.3  Reliability

Reliability is a determinant of system quality and a critical goal where the cost of failure is high
(e.g., in terms of equipment replacement or human lives).  Software Reliability is the probability
that the software in a system will perform without failure under specified conditions or use.
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Critical software reliability issues must be addressed early in the design process.  Reliability
must be built in up-front to prevent errors during conception, design, and development, as well
as to recover from failures during operations.  Reliability can only be designed in!  It cannot be
tested in nor can it be included as a retrofit due to an after thought.  The goal of optimum system
performance is well-engineered software which is 100% reliable.  If the software can be repaired
instantaneously without disrupting its operation, it also has 100% availability, regardless of how
often it fails.  [HUMPHREY89]

9.4.1.4  Safety

Software safety is closely tied to software reliability, and is the guarantee that the system will not
fail under stressed operational conditions.  Like software reliability, the issues of software safety
must be addressed squarely during program planning and development.  Ideally, this means the
software will be free of defects.  However, because software is created by humans, no matter
how carefully the system is designed, coded, and tested, the probability for defects caused by
human error are always be present.  Until we have conquered the human factor through techniques
such as highly automated development environments, safeguards must be built into all software
upon which human safety, and indeed survival, are dependent.  The cost for building in these
safeguards must, therefore, be factored into your cost, schedule, and resource estimates.

While Defense Nuclear Agency regulations cover the area of software safety for nuclear weapons,
software safety must be a topic of concern especially for all weapon system and C3 systems.  One
technique for enhancing safety is to employ software fault-tolerance methods in critical applications
or application segments.  One example of software fault-tolerance is the recovery block technique,
where a failure in the primary program is bypassed by executing an independent alternate program
that, hopefully, will execute successfully.  Other fault-tolerance techniques are multi-version
programming and exception handling.  It is essential to require stringent fault-tolerance methods
such as exception handling for flight control systems, C3 surveillance and sensor systems, and
other systems where system aborts requiring restarts are unacceptable and potentially life-
threatening.

9.4.1.5  Efficiency

Efficiency is an important software capability which refers to the highest and best use of critical
resources.  Processor cycles and memory locations are considered critical resources.  Efficiency
is a performance requirement that must be addressed during software requirements analysis.
Efficiency can also be achieved during the coding phase — the last point where nanoseconds or
bits can be squeezed out of software performance.  Three factors should be considered when
addressing efficiency requirements:  (1) software should be as efficient as required — not as
efficient as possible; (2) good design can improve efficiency; and (3) code efficiency and code
clarity go hand-in-hand and should not be sacrificed for nonessential improvements in
performance.

Source code efficiency is a direct result of algorithm efficiency defined during detailed design.
Many compilers have optimizing features that automatically produce efficient code by breaking
down repetitive expressions, using fast arithmetic, and applying efficiency-related algorithms.
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In the MIS world, memory efficiency is not equated to the minimum memory used.  Memory
efficiency takes into account the paging characteristics of an operating system.  Code location or
maintenance of functional domains by way of structured components is one way well-engineered
software reduces paging, and hence, increases efficiency.  In the weapon system software world,
memory restrictions are a real and critical concern, although low-cost, high-density memory is
rapidly evolving.  [History has shown, ironically, that whatever memory is available is how much
the software will need!]  Memory restrictions are generally a product of the size and weight
limitations for housing and shielding processors.  If system requirements demand minimal memory,
compilers must be carefully evaluated for memory compression, or as a last resort, assembly
language may have to be used.  Unlike other software system characteristics that must be juggled
against each other, techniques for run-time efficiency can sometimes lead to memory efficiency.
The key to well-engineered software with high memory efficiency is keep it simple.

There are two classes of input/output (I/O) efficiency, external and internal.  External I/O efficiency
measures the user interface.  Input supplied by the user and output produced for the user are
efficient when the information supplied is easily understood.  Internal I/O efficiency evaluates
the I/O directed from one device to another device (e.g., from a computer to a disk or to another
computer) or among modules within the same system.  This measure is usually expressed in
terms of hardware speeds, but the true measure is in throughput that includes processing time
required to process data and transmit it from one module to another.  [PRESSMAN92]

9.4.1.6  Understandability

Understandability is an important goal for the management of complexity.  It is the link between
the statement of the problem and the corresponding solution.  For software to be understandable,
it must reflect a natural view of the world.  Achieving of this goal involves producing a solution
to the stated problem in the form of an effective, understandable architecture.  Capturing such a
structure in software is necessary for it to be supportable, efficient, and reliable.

Different factors make software understandable.  Well-engineered software is readable as a result
of proper coding and proper documentation (including interface documentation).  Well-engineered
software also represents an accurate, understandable model of the real world.  Understandability
is achieved when the data structures (objects) and algorithms (operations) in the software solution
are easily distinguished from one another.  Understandability is also dependent on the programming
language chosen to express the solution.  [BOOCH94]

9.4.2  Software Engineering Principles

The goals discussed above are generic in nature and applicable to any software system — large
or small.  Once you understand these goals, you must employ a structured, disciplined development
approach to achieve them.  Administering sound engineering practices, based on the following
principles, produces solutions that are functional, supportable, reliable, safe, efficient, and
understandable.
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9.4.2.1  Abstraction and Information Hiding

• Abstraction.  One reason major software-intensive acquisitions fail is our inability to deal
with software complexity.  Abstraction is the software engineering principle for managing
complexity.  The purpose of abstraction is to separate the essential characteristics of a process,
or its data dependencies, from all nonessential details.  Abstraction is also performed during
software design where the problem is decomposed into increasing levels of detail (or decreasing
levels of abstraction).  A analogy can be made from the road map example.  When you plan
a trip across country you start with a map of the United States (high-level).  As you go
through each state you use a map of the state in which you are traveling (mid-level).  As you
approach your destination and are looking for a particular address, you use a city map (low-
level).

The software engineering process is, itself, an example of the abstraction principle.  Each
step in the process is a refinement of the abstraction level of the end product — the solution.
During systems engineering, software is abstracted to a component of a software-intensive
system.  During software requirements analysis, the software solution is defined in terms that
relate to the problem environment or function it must perform.  The level of abstraction is
reduced further as you proceed from architectural design to detailed design.  Ultimately, the
lowest level of abstraction is reached when the source code is written.

As the solution is decomposed into its component parts, each module in the decomposition
becomes a part of the abstraction at a given level.  Abstraction can be applied to both the
algorithms and data in the solution.  Thus, the logic of a software solution can be expressed
in terminology that describes the problem domain rather than in software-dependent terms.
Eventually, the details of expressing the problem will have to be addressed in software
terminology — and ultimately in code.  However, they can be deferred to lower levels where
attention to essential details can be worked and/or reworked without impact on other system
levels.  Thus, the number of items tackled at one time are reduced to a manageable amount
because attention is focused on the current level of decomposition.  Abstraction promotes the
goals of understandability and maintainability.

• Information hiding.  Where abstraction separates essential and nonessential details at any
given level, the purpose of information hiding is to make inaccessible those details that do
not affect other parts of the software system.  The principle of information hiding is to design
modules such that the information contained within a module is inaccessible to other modules
having no use for it.  Hiding means that modularity can be effectively accomplished by defining
a set of independent modules.  The only information passed among the modules is that which
is necessary to achieve functionality.

Abstraction promotes software maintainability and understandability by reducing the number
of details a developer is required to know at any given level.  It also details the procedural (or
informational) entities making up the software.  Hiding defines and governs access limitations
to procedural information within a given module and any local data structure used by the
module.  By including information hiding as a design criterion for modular systems, well-
engineered software reaps the greatest benefits when modifications are made during testing
and later during software maintenance.  With most data and procedures hidden from other
parts of the application, reliability is enhanced.  In addition, inadvertent defects introduced
during modifications are less likely to spread to other modules.  [BOOCH94]
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The benefits of abstraction and information hiding apply to all software engineering goals.
Abstraction supports modifiability and understandability by reducing the amount of detail at
any given level.  Information hiding enhances software reliability, because at each level of
abstraction, only essential operations are permitted.  Operations that obstruct or confuse the
logical structure are also hidden.

9.4.2.2  Modularity and Localization

• Modularity.  The principle of modularity has been around for almost 40 years and applies to
the physical software architecture.  Organizing very large applications into discrete, separately
named and addressable modules allows us to intellectually manage software complexity.
Also, with the right selection of module contents, the physical architecture can be made to
correspond with the logical architecture, making the overall system more supportable and
extendable.

Modules can be functional (procedure-oriented) or declarative (object-oriented).  Because
reliability must be built in, well-engineered software has well-defined interfaces connecting
its modules.  No matter how well-defined a module is, it must be able to interact with other
modules.  Coupling is the measure of interface tightness between modules.  Loosely coupled
modules can be treated relatively independently from others, and are easier to interface once
integrated.  How tightly bound or related the internal module elements are to one another is
called cohesion.  Modules with strong cohesion are desirable because their internal components
have similar functionality and logical interdependence, making the modules basically self-
contained.  Self-contained modules are conceptually easier to handle and permit teams of
programmers to work independently from each other.

• Localization.  Applying the principle of localization helps create modules with loose coupling
and strong cohesion.  The principle of localization deals mainly with physical location.  A
module that has strong cohesion has a collection of logically-related resources physically
located within it.  Localization also implies that modules are as independent of other modules
as possible (i.e., well-engineered software has a loosely coupled organization among its
modules).

The principles of modularity and localization support the goals of modifiability, reliability,
and understandability.  In well-structured software, any given module is understandable —
independent of other modules.  Since design decisions are localized in given modules,
modification can be limited to a small set of modules.  In addition, if modularization has been
successful, there will be limited and looser interconnections among modules.  [BOOCH94]
This results in greater reliability as defects in loosely coupled modules do not impact the
performance of neighboring modules to the extent that tightly coupled ones do.

9.4.2.3  Uniformity, Completeness, and Confirmability

Abstraction and modularity are the most important principles used to control software complexity.
But they alone do not ensure that the software is consistent and accurate.  Uniformity, completeness,
and confirmability provide these properties.



9-27

Chapter 9: Engineering Software-Intensive Systems                                                  GSAM Version 3.0

• Uniformity.  The principle of uniformity directly supports the goal of understandability by
ensuring modules use consistent notation and are free from unnecessary differences.
Uniformity results from good coding practices with a consistent control structure and calling
sequences for operations where logically-related objects are represented the same at any
level.

• Completeness.  The principles of completeness and confirmability support the goals of
reliability, efficiency, and modifiability by aiding in the development of solutions that are
accurate.  Where abstraction extracts the essential details of a given problem set, completeness
ensures that all important elements are included.  Abstraction and completeness guarantee
that the modules developed are necessary and sufficient.  Efficiency can be improved because
lower-level implementation can be fine-tuned without affecting higher-level modules.

• Confirmability.  The principle of confirmability means the software is decomposable so it
can be readily tested, thus enabling modifiable software.  The principles of completeness and
confirmability are not easily applied.  A programming language with strong typing (such as
Ada) facilitates the production of confirmable software.  Software management tools are also
used to ensure software is complete and confirmable.

9.5  Managing Software Engineering

Management is the key element in the engineering process as it permeates the entire life cycle.
To conduct a successful software acquisition program, you must understand the scope of the
work to be accomplished, the risks you will incur, the resources required, the tasks to be performed,
the milestones to be tracked, the effort (including cost) to be expended, and the schedule to be
observed.  To be a successful manager, you must understand all facets of your program and rely
on educated, experienced software professionals who understand and can implement software
engineering process complexities.  Sound management starts before the technical work begins,
continues as the software matures from a concept to a functional reality, and only ends when you
or the system is retired.  [PRESSMAN92]

There are three basic activities you must perform as a manager to ensure program success.  These
activities are:

• You must plan;
• You must manage; and
• You must measure, track, and control.

Having made the software engineering commitment, as policy prescribes, the following items
must be addressed to ensure your program is on the right track and that your developer is
engineering your software. These software engineering management activities include the
following [discussed in the indicated chapters]:

• Risk Management [Chapter 6],
• Software Development Maturity [Chapter 10],
• Software Estimation, Measurement and Metrics [Chapter 13],
• Reuse,
• Software Tools, and
• Software Support [Chapter 12].
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Figure 9-12 illustrates how the software engineering management activities discussed here flow
into the software life cycle.  As you can see, process improvement and risk management are
performed continuously throughout the system’s life.  Consideration of software development
maturity and the contractor’s commitment to continuous improvement is essential during source
selection.  As process improvement succeeds, software development maturity will advance.  Once
requirements are specified, an architecture can be defined that addresses the system from a domain
perspective with regards to the need for open systems.  The detailed design concentrates on
building in quality attributes which include the optimum implementation of reuse and COTS.
Prototyping and demonstrations are used to reduce risk and validate that the design addresses
user and technical requirements.  An appropriate design language should be chosen and used for
coding.  Models are used throughout the life cycle to define development procedures and analyze
metrics data, which are collected throughout.  Software engineering tools encompass the entire
spectrum of development, and should be used to aid in the implementation of software engineering
methods and life cycle activities.

Figure 9-12.  Software Engineering Relationship to the Software Life Cycle

9.5.1  Software Engineering Information

An excellent source of information on software engineering is CrossTalk, the monthly publication
of the Software Technology Support Center (STSC).  [See box below for information on how to
subscribe.]  The need for continued advances in software engineering management and methods
is magnified as our reliance on commercial practices and products increases, which also compete
in the global marketplace.  Timely, topical articles are a means of keeping informed and up-to-
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date on the latest developments in technology and professional practices amid the momentum of
change within the software industry.  CrossTalk is a high-quality, accurate information link between
software managers and practitioners throughout the field.  Distributed without charge, CrossTalk
is highly recommended reading for its currency and technical content.

Another periodical, Chips, is a DoD magazine sponsored by the Navy.  It has a different focus
than CrossTalk, covering microcomputer issues, including contracting, networking, software
development, policy, training, etc.  However, it occasionally has some software engineering-
related articles.  Chips is distributed free to all government users.  Contact the Naval Computer
and Telecommunications Area Master Station LANT through e-mail at
chips@email.chips.navy.mil or view Chips electronically on the Internet at
http://www.chips.navy.mil.

TO SUBSCRIBE:  For more information on a free subscription to CrossTalk, contact the
Software Technology Support Center (STSC), Attention:  Customer Service, OO-ALC/
TISE, 7278 Fourth Street, Hill AFB, Utah 84056.  Phone: (801) 775-5555 or DSN 775-5555,
Fax: (801) 777-8069, or DSN 777-8069.  E-mail: consulting@stsc1.hill.af.mil or Internet at
http://www.stsc.hill.af.mil.

9.6  What is Information Engineering?

If you have ever visited the sunny Silicon Valley in California, one of the most popular local
curiosities is an enormous house built around the turn of the century by the rifle heiress, Sarah
Winchester.  As Sarah grew older, she believed she was being haunted by the ghosts of people
killed by her husband’s rifles.  Terrified of meeting these angry souls in the hereafter, she employed
two full-time spiritualists who advised her that she would never die as long as her house kept
living and changing.  For 38 years, the construction of towers, wings, chimneys, rooms, and
gardens was nonstop.  Sarah’s vast fortune was employed to guarantee the constant sound of
workers pounding nails, laying cement, digging holes, and chiseling wood.  Everything needed
to keep the operation going was on-site — wood shops, cement mixers, warehouses, and supply
yards.  Because the construction engineers never had a set of overall blueprints showing where
the house was going, some rooms were remodeled more than a dozen times.  Over the years,
throughout this frenzy, oddities began to appear.  The house has stairways leading into ceilings,
windows blocked by walls, more halls and passages than rooms to connect, a three-story chimney
that fails to meet the roof, and many rooms that serve the same purpose.

Like the Winchester Mystery House, the information systems of many large organizations and
corporations are under perpetual construction — growing, changing, duplicating, multiplying.
There are expanding databases here, new input screens there, spreadsheets everywhere — some
systems are changed, updated, and enhanced more than a dozen times.  Often vast fortunes are
spent keeping these activities going with everything needed to do the job on-site.  Over the years
oddities begin to appear.  The collection of software systems contains masses of unused reports,
more bridges and interfaces than systems to connect, data that are inconsistent, redundant,
inaccessible, and in incompatible formats, with many systems serving the same purpose.  These
enormous mystery systems live and change without a set of overall blueprints for the data, systems,
and technology needed to support the enterprise.  [SPEWAK93]

www.chips.navy.mil
www.stsc.hill.af.mil
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In the early 1980s, to help stop the constant custom building and replacing of systems with costly
odd features, James Martin developed the information engineering methodology.  [MARTIN81]
Intending it to contrast with, and complement, software engineering, Martin defined IE as,

“The application of an interlocking set of formal techniques for the planning, analysis, design,
and construction of information systems on an enterprise-wide basis across a major sector of the
enterprise.”  [MARTIN89]

Information engineering is a form of domain engineering oriented towards the MIS domain,
which has also proven successful in analyzing C2 systems.  IE is predicated on the realization
that the procedures for conducting business are in constant flux due to frequent restructuring and
changes in organizational focus; whereas, the data requirements of the enterprise are stable.  In
traditional approaches, database design is dictated by application data requirements developed
to automate specific procedures.  Every time procedures change, the database must be redesigned.
Changing database design to accommodate a change in one procedure has a snowball effect
requiring maintenance on all other system components accessing the changed part.
Understandably, systems designed this way have extremely high maintenance costs.  The goal of
IE is to capture the stable data requirements of the enterprise in a database design that remains
stable throughout the software life cycle.  Dynamic elements are captured in those applications
(modules) always subject to change.  This process results in substantial maintenance cost savings.
[MICAH90]  Because IE focuses first on data rather than on procedures, it is called a data-driven
method.

9.6.1  Information Engineering Process

According to Finkelstein, Martin’s co-author, the IE process is characterized by two distinct
stages:  a technology-independent and a technology-dependent stage, as illustrated in Figure 9-
13.  The starting point is strategic business planning which allows for continual evaluation and
refinement of the Strategic Plan at all stages of development, as illustrated in Figure 9-14.  Using
this method, feedback is quick, exact, and effective, with clear communication links and precise
implementation.  [FINKELSTEIN92]
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Figure 9-13.  Information Engineering Phases  [FINKELSTEIN92]
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Figure 9-14.  Strategic Management Planning  [FINKELSTEIN92]

9.6.2  Information Engineering Architecture

IE addresses four architectural levels which separate data and process, thus creating databases
and applications that are flexible and facilitate rapid changes and enhancements in response to
competitive pressures.  These levels are illustrated in Figure 9-15.
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Figure 9-15.  Information Engineering Four-Level Architecture  [FINKELSTEIN92]

• Level 1:  Business.  This reflects the corporate vision because data based on strategic planning
statements are defined at all management levels.  The business plans operate on these data,
based on planning statements and business events which process the data.

• Level 2:  Logical.  Planning statements based on the corporate vision are used to develop
technology-independent data models.  Process models, represented by the business model,
are developed from data models and business events based on the Business Plan.

• Level 3:  Physical.  Technology-dependent database designs are developed based on the data
and process models.  These database designs and relevant process models (representing the
system models) provide input to application design (which also feeds back to database design).

• Level 4:  Platform.  The database design is physically implemented as site-dependent databases.
Application code operating against them implements the databases and application design.
Databases can be implemented and applications executed on specific platforms that employ
the best available hardware, software, and communications technologies.   [FINKELSTEIN92]

NOTE:  Make sure someone in your program office understands IE well enough to
interpret and review contractor IE products.  Otherwise, there is the risk that the stacks
of paper produced by this process will be incorrect or ignored.

IE is discussed as an example of one method for modeling data.  Other methods for MIS are also
viable, such as essential systems analysis [McMENAMIN84], Enterprise Architecture Planning
[SPEWAK93], object-oriented analysis [COAD90], and IDEF [described next].  The approach
you adopt requires research and an understanding of your program to determine which is most
applicable to your program-specific needs.

9.6.3  IDEF

Integrated Computer-Aided Manufacturing Definition Language (IDEF) is a modeling technique
that supports IE.  It was initially developed in the 1970s for Air Force Logistics Center support
programs in the manufacturing environment. [See FIPS Pub (Federal Information Processing
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Standards Publication) 183: Integration Definition For Function Modeling (IDEF0)]  In 1989,
an IDEF users’ group was formed to establish a methodology for implementing the IDEF approach
which provides a framework for classifying important information about an enterprise.  The
main goal of the IDEF exercise is to identify areas for process improvement.  Improvements can
be in the areas of:

• Manual procedures and techniques,
• Product and service quality,
• Industrial processes and factory automation,
• Information systems and computer automation,
• System development methods, and
• Business procedures, to name a few.

IDEF activity modeling captures and graphically depicts the specific steps, operations, and data
elements needed to perform an enterprise activity.  An activity is defined as a named process,
function, or task that occurs over time and has recognizable results.  As illustrated in Figure 9-16,
each activity is represented by a rectangle.  Entering, exiting, or linking activities are those factors
that change the activity.  These fall into the categories of:

• Input data or material for the activity (e.g., program requirements),
• Controls that regulate the activity (e.g., engineering principles, existing policies),
• Output data or materials produced by the activity (e.g., quality software), and
• Mechanisms comprised of people or machines that perform the activity (e.g., new technology).

Figure 9-16.  IDEF (Level A0) for Nominal Program

The interrelationships among activities are modeled by using node trees, as illustrated in Figure
9-17.  An activity can be decomposed into subactivities which can be further decomposed into
sub-subactivities.  Context diagrams and decomposition diagrams are used to provide both overall
and more detailed breakdowns of activities.  In a typical program, the scope and requirements
are defined first.  Then the information required to support the activities is gathered through a
series of working sessions that include users and systems experts.  These data are finally captured
in an automated tool for documentation.
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Figure 9-17.  IDEF (Decomposition of A0) Model for a Nominal Program

The IDEF approach is recommended before starting new MIS programs.  It aids in mission area
analysis, functional analysis, and the strategic planning.  IDEF can be also used to model alternative
views of the enterprise.  The IDEF approach uses hierarchically decomposed function models
and entity-relationship (E-R) diagrams.  [An E-R diagram identifies data objects and their
relationships through a graphical notation.]  These views then become the baseline upon which
to plan and implement process improvement.  The IDEF modeling approach leads to an
understanding of the total enterprise by integrating business tasks, rules, and objectives to work
together in a productive way.

9.7  Success Through Engineering

Mosemann summarized why engineering is the solution for successful software-intensive systems
acquisition and management when he emphasized that,

“...we’ve got to adopt an engineering focus.  We have got to concentrate on cost-effective solutions,
solutions that are built from models, and on using capable, defined processes, rather than focusing
on perfect systems that meet 100% of our wishes.  Again, this is a management challenge, not a
technical challenge.  There’s just no way to manage or to control the configuration, to control the
side-effects, in these kinds of large software developments unless we use engineering discipline.”
[MOSEMANN921]

As illustrated in Figure 9-18, software engineering requires more emphasis and resources up-
front during the development effort.  This change from a traditional software-as-art approach
(where most of the resources are spent in the support phase) to a software engineering approach
reduces the total amount of resources necessary, since the resultant software support costs are
substantially reduced.  Well-engineered software lays a solid foundation for the system to evolve
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into its operational environment by employing sound development practices and procedures.
Through the software engineering discipline you will have available to you:

• Comprehensive methods for all software development phases,
• Better tools for automating these methods,
• More powerful building blocks for software implementation, and
• An overriding philosophy for coordination, control, and management.  [PRESSMAN92]

Figure 9-18.  Software Engineering Builds a Solid Foundation Up-front

The challenge is to acquire and develop systems that meet the user’s needs given the usual
performance, life cycle cost, and schedule criteria.  However, the only way to meet this challenge
and achieve acquisition success is to use engineering discipline in all aspects of software
development.  Anything less will only produce schedule slips, cost overruns, and systems that do
not meet user needs.
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